Lecture 21

Charles Favre

Math-601D-201: Lecture 21. Pseudo-convex domains and $\bar{\partial}$ -equation

Charles Favre charles.favre@polytechnique.edu

March 26th, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Lecture 21

 $\Omega \subset \mathbb{C}^n$ connected open set.

▶ (*p*, *q*)-forms

$$u = \sum_{|I|=p,|J|=q} u_{I,J}(z) dz^I \wedge dar{z}^J$$

• $du = \partial u + \overline{\partial} u$ where ∂u is a (p + 1, q) form and $\overline{\partial} u$ is a (p, q + 1) form

$$\blacktriangleright \, \bar{\partial} u = \sum_{|I|=p, |J|=q} \bar{\partial}(a_{I,J}) \wedge dz^{I} \wedge d\bar{z}^{J}$$

• $d^2 = 0$ implies $\partial^2 = \bar{\partial}^2 = 0$ and $\partial \bar{\partial} + \bar{\partial} \partial = 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Calculus on (p, q)-forms

 $f: \Omega_1 \to \Omega_2$ holomorphic, and ω smooth (p, q)-form in Ω_2 . Then

$$f^*(\bar{\partial}\omega) = \bar{\partial}(f^*\omega)$$

 \longrightarrow the operator $\bar\partial$ can be transported to any complex manifold.

Definition

 $\Omega \subset \mathbb{C}^n$.

$$\mathcal{H}^{p,q}(\Omega) = \left\{ \omega \in \mathcal{C}^{\infty}_{p,q}(\Omega), \ \bar{\partial}\omega = \mathbf{0} \right\} / \bar{\partial}\mathcal{C}^{\infty}_{p,q-1}(\Omega)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Resolution of $\bar\partial$ operators on pseudo-convex domains

Lecture 21

Charles Favre

Theorem

Let $\Omega \subset \mathbb{C}^n$ be any pseudo-convex domain. For any smooth (p, q + 1)-forms f on Ω satisfying $\bar{\partial} f = 0$, there exists a smooth (p, q)-form u such that $\bar{\partial} u = f$. In other words,

$$H^{p,q}(\Omega) = 0$$
 for all $q > 0$.

 \longrightarrow we are going to follow Hörmander's approach based on Hilbert spaces technics

Characterization of pseudo-convex domains

Lecture 21

Charles Favre

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Theorem

- $\Omega \subset \mathbb{C}^n$. The following are equivalent.
 - Ω is a domain of holomorphy;
 - Ω is pseudo-convex;
 - $H^{p,q}(\Omega) = 0$ for all q > 0;
 - $H^{0,q}(\Omega) = 0$ for all 0 < q < n.

Charles Favre

Theorem

 $\Omega_j \subset \Omega_{j+1} \subset \mathbb{C}^n$ pseudo-convex domains. Then $\bigcup_j \Omega_j$ is pseudo-convex.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ